はりに荷重が作用するときの「たわみ:δ」や「たわみ角(回転角):θ」おを求める問題。
たわみの最大値 ・・・ δmax = C・P・l^3/E・I
たわみ角の最大値 ・・・ θmax = C'・P・l^2/E・I
で算出でき、C及びC'の値は
① 片持梁 or 単純梁
② 固定端 or 回転端
③ 集中荷重 or 分布荷重 or モーメント荷重
によって異なる。
これらは試験までには確実に暗記すること。
<たわみδの最大値におけるCの値>
集中荷重 分布荷重 モーメント荷重
片持梁・固定端 1/3 1/8 1/2
単純梁・回転端 1/48 5/384
単純梁・固定端 1/192 1/384
<たわみ角の最大値におけるC'の値>
集中荷重 分布荷重 モーメント荷重
片持梁・固定端 1/2 1/6 1/1
単純梁・回転端 1/16 1/24
単純梁・固定端 0 0
少しひねった問題としては
・部材の一部が剛体の場合
→ 剛体は変形しないので、先端の変位δは根本の回転角θ×部材の長さlで表せる。
0 件のコメント:
コメントを投稿